ЛитВек: бестселлеры недели
Бестселлер - Влада Ольховская - Смертельные змеи - читать в ЛитвекБестселлер - Роберт Б. Чалдини - Психология влияния. Убеждай, воздействуй, защищайся - читать в ЛитвекБестселлер - Майкл Холл - Полный курс НЛП - читать в ЛитвекБестселлер - Стивен Пинкер - Лучшее в нас - читать в ЛитвекБестселлер - Саша Сулим - Безлюдное место. Как ловят маньяков в России - читать в ЛитвекБестселлер - Татьяна Владимировна Мужицкая - Роман с самим собой - читать в ЛитвекБестселлер - Патрик Кинг - Харизма - читать в ЛитвекБестселлер - Патрик Кинг - Законы привлекательности - читать в Литвек
Литвек - электронная библиотека >> Недоспасов Вадим Олегович >> Психология >> Физиология центральной нервной системы >> страница 3
периферическими. Погружённые в жидкую плёнку бимолекулярного слоя липидов белки способны медленно перемещаться из одного участка в другой; используя метафору, о мембране можно сказать так: это липидное море, в котором, как айсберги, плавают белки.

Каким путём могут пройти через мембрану необходимые клетке вещества, как удаляются продукты её жизнедеятельности? Жирорастворимые вещества, естественно, растворяются и в липидах мембраны и поэтому могут довольно легко пройти через неё путём обыкновенной диффузии. Так же легко диффундируют через липидную часть мембраны растворимые в жидкостях газы, например кислород и углекислый газ. Но растворённые в воде молекулы (обычно несущие электрический заряд), ионы и крупномолекулярные соединения способны пройти через мембрану только с помощью специальных транспортных белков, среди которых различают каналы и насосы.

Каналы – это трубчатые белки, они имеют заполненную водой пору, через которую по концентрационному или электрическому градиенту проходит тот или иной ион либо молекула. Такой транспорт называют пассивным, поскольку он не требует расхода энергии специально для переноса. Иное дело, если ионы или молекулы понадобится перенести против концентрационного или электрического градиента: в этом случае понадобится энергия. Такой транспорт назван активным и его осуществляют белки-насосы, которые используют энергию аденозинтрифосфорной кислоты (АТФ).

Многие мембранные белки действуют в качестве ферментов: они ускоряют биохимические реакции в самой мембране и возле её поверхностей. Ферменты высоко специфичны, т.е. каждый из них контролирует только одну биохимическую операцию. В связи с этим каждой клетке приходится иметь не одну сотню различных ферментов, как механику, вынужденному носить с собой набор различных гаечных ключей.

Клеточные рецепторы – ещё одна разновидность мембранных белков, Они выступают над наружной поверхностью мембраны и в этой части своей молекулы имеют участки, специфически связывающие строго определённые вещества: нейромедиаторы, гормоны или иные биологически активные соединения. Прикрепление такого вещества к рецептору влияет на деятельность клетки, например, изменяет проницаемость её мембраны или скорость обменных реакций внутри клетки. Некоторые белки нужны для сохранения формы клетки и субклеточных структур, для объединения клеток друг с другом – такие белки называют структурными. Все белки, независимо от выполняемой функции, со временем разрушаются, а на смену им синтезируются новые белковые молекулы.

Мембранные белки определяют специфическое поведение той или иной клетки, именно от них зависит: какие именно вещества, и в каком количестве смогут войти в клетку или покинуть её. Это обстоятельство важно не только для отдельно взятой клетки, но и для межклеточных отношений, т.е. для межклеточной сигнализации. Передача сигнала от клетки к клетке возможна только двумя способами: проведением электрического тока или использованием специальных химических веществ в качестве курьеров для передачи информации. И в том, и в другом случае клеточные мембраны должны избирательно изменять свою проницаемость, избирательно регулировать характер биохимических реакций, избирательно связываться с определёнными веществами и т.д. По-разному решая все эти проблемы выбора, клетки демонстрируют свою индивидуальность только благодаря индивидуальному подбору белков.

Как уже было сказано, органеллы клетки имеют собственные мембраны. К этому следует добавить, что они во многом напоминают плазматическую мембрану клетки по своему строению и функциональной организации.

1.3. Ядро клетки

Ещё в XIX веке в ядре были обнаружены хромосомы – интенсивно окрашивающиеся тельца, которые регулярно появляются во время клеточного деления или митоза. Позже стало известно, что хромосомы – это плотно упакованные в ядерные белки двойные спирали дезоксирибонуклеиновой кислоты (ДНК). У каждого вида животных обнаруживается постоянное число хромосом определённой формы и величины. У человека есть 23 пары гомологичных, т.е. соответствующих друг другу по определяющим признакам, хромосом. Одна из хромосом каждой пары унаследована от отца, другая – от матери. Поскольку все клетки организма происходят от одной оплодотворённой яйцеклетки, они имеют совершенно одинаковый набор хромосом вне зависимости от принадлежности клетки к той или другой ткани.

ДНК – это высокомолекулярный полимер, образованный соединёнными друг с другом нуклеотидами, каждый из которых состоит из молекулы углевода D-2-дезоксирибозы, остатка фосфорной кислоты и одного из четырёх азотистых оснований: аденина, гуанина, цитозина и тимина. В 1953 году Джеймс Уотсон и Фрэнсис Крик (Watson J. Crick F.) построили модель ДНК, которая состоит из двух длинных цепей, скрученных в виде спирали; при этом обращённые внутрь азотистые основания попарно соединены друг с другом водородной связью, причём аденин всегда соединён с тимином, а гуанин – с цитозином (Рис. 1.4).


Физиология центральной нервной системы. Иллюстрация № 4 В определённой последовательности этих нуклеотидов заключена вся генетическая информация ДНК: комбинация трёх следующих друг за другом нуклеотидов (она называется триплет или кодон) означает выбор одной из 20 существующих аминокислот для включения её в молекулу вновь синтезируемого белка. Каждый из четырёх нуклеотидов можно представить, как "букву генетического языка", а триплет – как кодовое слово, из которых составляется более или менее длинная фраза. Она содержит полную инструкцию для синтеза какого-либо конкретного белка, а участок хромосомы, на котором записана такая информация, получил название – ген. Каждый ген содержит также знаки препинания в виде т.н. инициирующих и терминирующих кодонов, которые определяют начало и конец считывания генетической информации.

Существуют специальные механизмы экспрессии генов, т.е. востребования генетической информации. При возникновении потребности в каком-либо белке происходит деконденсация хромосомы, т.е. разуплотнение в том локусе (участке), где находится нужный ген. Двойная спираль ДНК в этом месте расходится, чтобы предоставить возможность для синтеза молекулы информационной рибонуклеиновой кислоты (иРНК). Этот синтез – не что иное, как переписывание генетической информации (транскрипция), причём транскрипция контролируется специальным ферментом. Когда же транскрипция завершится, разошедшиеся для неё нити ДНК вновь соединятся, как застёжка на молнии.

Образующаяся иРНК отличается от ДНК тем, что имеет лишь