Литвек - электронная библиотека >> С В Иванов >> Военная история и др. >> Сверхмалые субмарины и человеко-торпеды. Часть 4 >> страница 4
обнаруживалась как в надводном положении радиолокаторами, так и в подводном гидроакустической аппаратурой. На лодке был установлен оптический перископ Карл Цейс С/15 кругового вращения, затем его заменили более совершенным перископом С/16. На рубках лодок поздней постройки ставились плексиглазовые полусферы, способные выдерживать давление воды до глубин 45 м. На самых поздних подках были установлены двойные рули и устройства Коп Dussenruder, улучшившие управляемость и увеличившие скорость. Большинство «Зеехундов» было оснащено гидрофонами Kleeblatt, планы установки на лодках более совершенной гидроакустической аппаратуры Hase в жизнь претворены не были. На нескольких учебных лодках стояли устройства UKW-Funksprechagerat, включавшие передатчик Kl.Fuspr. с дальностью действия 4000 м, аккумуляторные батареи, микрофоны и наушники. Антенна радиостанции крепилась к трубе перископа. На лодках устанавливались также радиостанции других типов, обычно — танковые, часто — FuG-29. Испытания «Зеехунда» были завершены 28 ноября 1944 г… входе испытаний прототипы прошли 300 миль и пробыли в море 110 ч, максимальная длительность одного похода составила 11 суток. Согласно некоторым источникам, в апреле 1944 г. несколько «Зеехундов» готовились к ведению боевых действий торпедами Вальтер Т XII G 7 иI (они известны и как К-Butt Torpedo). На других лодках проводились эксперименты с управляемыми торпедами Spinne (Т10), которые управлялись по проводам (длина провода 10 000 м). Также с лодок была предусмотрена возможность использования акустических торпед Т-5 Zaukonig, дальность стрельбы — 7 500 м, скорость хода — 20 узлов.

Водоизмещение, м³

— без вооружения 12,3

— боевое (с торпедами или зарядами) 14.9

Размеры, мм

— длина 11865

— ширина 1840

— диаметр корпуса 1300

(толщина обшивки 5 мм)

Силовая установка:

— надводного хода дизель NAS Бюссинг LD-6 мощностью 60 л.с.

— подводного хода электромотор AEG АIV- 77 мощностью 25 л.с.

Количество гребных винтов 1

Количество лопастей гребного винта 3

Скорость полного хода, узлы:

— на поверхности 7,7

— под водой 6,0

Дальность плавания, мили

— на поверхности со скоростью 7 узлов 270 (500 с дополнительными внешними баками)

— под водой со скоростью 6 узлов 19,69

Максимальная глубина погружения, м 30 (максимальный достигнутый рекорд 70 м)

Торпедное вооружение 2 торпеды G7e

Экипаж, чел. 2

Высокие заявленные характеристики сверхмалых лодок, вооруженных электроторпедами G7e. потребовали создания новых аккумуляторных батарей. В декабре 1944 г. на U-6251 и U-6252 установили новые гальванические элементы типа Primaballerie. Такие элементы были известны еще во второй половине 20-х годов, но интерес к ним проявили лишь в 1943 г. с появлением электроторпед G-7e. Изначально новые элементы выполнялись на основе магния и углерода, но в начале 1943 г. профессор Штейнвер предложил использовать элементы на основе свинца и цинка. С новым батареями мощность установленного на торпеде G-7e электродвигателя возросла на 70 %, теперь торпеда со скоростью 30 узлов была способна преодолеть под водой расстояние в 10 700 м. Велись работы по гальваническим элементам иных конструкций и типов.


Сверхмалые субмарины и человеко-торпеды. Часть 4. Иллюстрация № 53 Кормовая часть миниатюрной подводной лодки шипа Seehund.


Перед концом войны велись проектные работы над следующими типами подводных лодок:

Тип XXVII F (водоимещение 9,25 т) Тип XXVII G (водоизмещение 13,8 т) Тип XXXII (водоизмещение около 20 т) Тип XXXIV (водоизмещение около 98 г) Тин Schwertwal I (водоизмещение 17,5 т) Тип Schwertwal II (водоизмещение 18 т) Тип Delphin I (водоизмещение 2,66 т) Тип Delphin II (водоизмещение около 8 т) Тип Manta (водоизмещение около 50 г) Тип Tarpon (водоизмещение около 4–5 т) Подводная амфибия типа Seeteufel. Главной целью проектных работ было создать миниатюрную лолку, обладающую высокой скоростью в погруженном положении и достаточным запасом хода в над- и подводном положении. Для этого требовался мощный двигатель, независимый от подачи забортного воздуха. Шнорхель не обеспечивал необходимой подачи воздуха, поскольку маленькую подводную лодку заливало волной даже в надводном положении. С другой стороны, небольшие размеры лодки не позволяли разместить в ней мощных ДВС и электродвигателей. В случае с электродвигателями ситуация осложнялась тем, что для их работы требовались тяжелые аккумуляторы. В этой ситуации большие надежды возлагались на двигатель профессора Вальтера.

Выше мы уже описали конструкцию двигателя, работающего на перекиси водорода. Рабочее вещество переводится в парообразное состояние с помощью катализатора. Продукты распада — вода и молекулярный кислород — использовались для вращения турбины. Свободный кислород используется для сжигания топлива. В результате получается газовая смесь температурой порядка 2000 °C. Эго слишком большая температура. поскольку для газовой турбины требуется газ температурой порядка 700 °C. Газ приходится охлаждать.

Принцип действия горячего контура двигателя Вальтера заключается в следующем. Насос (1) подает перекись водорода в реактор (5) через клапан (4). Перекись водорода в реакторе разлагается н возникшая смесь подается в камеру сгорания (6). где сжигается топливо, подающееся насосом (2). При старте двигателя топливо подается через пусковую форсунку, куда топливо подается через клапан (18). Охлаждающая вода подается насосом (3). Газовая смесь, полученная в камере сгорания, состоит из углекислого газа и водяного пара. Давление смеси 30 бар. температура 550 °C. Газ подается на турбину (8). которая через редуктор вращает винт (10).

Отработанный газ охлаждается в конденсаторе (II). Сконденсировавшаяся вода поступает в бак (12). Углекислый газ собирается в верхней части бака. Когда давление в баке достигает большой величины, углекислый газ выпускается за борт. Если лодка идет на достаточной глубине, углекислый газ успевает раствориться в воде, поэтому на поверхности никаких пузырей не появляется. По мере расхода перекиси водорода и топлива для компенсации потраченной массы насосом (17) закачивается забортная вода в радиатор (16). Лишняя вода отводится за борт, поток воды регулируется автоматическим клапаном (4).

Конденсат (12) подается насосом (14) в радиатор (16). Часть охлажденного конденсата используется в конденсаторе (11). часть возвращается в контур насосом (3) через клапан (4), часть отводится за борт через клапан (15). Важную роль в системе играют автоматические клапаны (4) которые дозируют расход рабочих веществ (девять частей конденсата, одна часть топлива и девять частей перекиси водорода).

Чаше всего приводятся данные из расчетов