Литвек - электронная библиотека >> Виктор Ноевич Комаров >> Астрономия и Космос и др. >> Новая занимательная астрономия >> страница 4
значения, но, наоборот, стала несравненно достовернее.

Таким образом, существенный прогресс научной теории начинается с отрицания.

Не случайно поиск новых фактов особенно интенсивно ведется именно в таких направлениях, где есть основания надеяться на получение принципиально новой информации.

«…Экспериментаторы усерднее всего ведут поиск там, где вероятнее всего найти опровержение наших теорий, — утверждает Р. Фейнман. — Другими словами, мы стараемся как можно скорее опровергать самих себя, ибо это единственный путь прогресса»[3].

А всякому отрицанию неизбежно предшествует сомнение.

«Сомнение — необходимый компонент развивающейся науки, — говорит тот же Р. Фейнман, — одна из предпосылок научного знания: либо мы оставим открытой дверь нашему сомнению, либо никакого прогресса не будет. Нет познания без вопроса, нет вопроса без сомнения…»[4].

Итак: новые факты — сомнения — отрицание привычных представлений — разработка более общих, чем прежде, теоретических представлений — такова столбовая дорога научного прогресса. И отрицание на этой дороге — одна из первых узловых станций.

Таким образом, новые факты, противоречащие существующим представлениям, в конечном счете играют не разрушающую, а, наоборот, созидающую роль: они ведут к обобщению и углублению этих представлений.

Астрономическая наука последних десятилетий особенно богата открытиями новых фактов. И этим она прежде всего обязана усовершенствованию телескопов и появлению новых эффективных методов исследования Вселенной: радиоастрономии, инфракрасной, ультрафиолетовой, рентгеновской и гамма-астрономии, а также развитию полетов в космос и применению различных космических аппаратов для астрономических наблюдений.

Немаловажную роль играет и то обстоятельство, что космос на наших глазах становится поставщиком весьма ценной научной информации, значение которой далеко выходит за рамки чисто астрономических интересов.

В необъятных просторах Вселенной протекают такие процессы, которые на Земле не происходят и которые мы поэтому еще не знаем. Бесчисленные формы существования материи, неизвестные человеку источники энергии, необычные физические условия…

Современная физика достигла такого уровня развития, когда чуть ли не каждый новый шаг вперед требует весьма сложных и тонких экспериментов, для осуществления которых приходится создавать все более мощные и грандиозные установки. Их строительство занимает годы и требует значительных затрат. Но дело даже не только в этом. Как правило, современные экспериментальные физические исследования так или иначе представляют собой в большинстве случаев опытную проверку тех или иных выводов теории. Возможностей натолкнуться в эксперименте на какое-то непредвиденное, совершенно неожиданное явление с каждым годом остается все меньше. Времена «свободного» экспериментального физического поиска, как это было в «добрую» старую классическую эпоху, практически давным-давно миновали.

Другое дело — поиск в бесконечно разнообразной лаборатории Вселенной, где всегда есть возможность обнаружить что-либо неизвестное. Хотя, разумеется, и здесь многое зависит и от технических средств (еще не все космические явления мы можем наблюдать), и от теоретических предпосылок (можно наблюдать нечто оригинальное и не обратить внимания).

Конечно, не следует думать, что на Земле физикам уже больше нечего делать и остается только одно — направить свои усилия на изучение космических явлений. Земная и космическая физика должны дополнять друг друга. Но, во всяком случае, на данном этапе развития естественных наук Вселенная в ближайшем будущем может стать очень важным поставщиком ценнейшей информации, которая способна значительно расширить наши представления о физике мироздания.

Но добывать новые факты в лаборатории Вселенной далеко не просто. Прежде всего, потому, что космические объекты находятся на огромных расстояниях от Земли. Есть и другие трудности.

«Черные ящики» в космосе

В кибернетике рассматривается такая задача. Есть некоторый объект, внутреннее устройство которого нам неизвестно. Его называют «черным ящиком». Но у этого объекта имеются «входы» и «выходы». На «входы» поступают внешние воздействия, объект отвечает на них определенными реакциями.

Задача состоит в том, чтобы, не «вскрывая» черного ящика, только по характеру входных и выходных сигналов составить представление о его внутреннем устройстве.

Представьте себе, что вы не знаете ни конструкции, ни принципа действия вашего радиоприемника. Известно лишь, что на его «вход» поступают электрические сигналы с антенны, а на «выходе», в динамике, мы слышим звук: голос, музыку, пение. И по этим «входным» и «выходным» данным необходимо составить представление о конструкции черного ящика — радиоприемника.

В принципе существуют два пути решения задачи. Можно регистрировать поступающие от антенны сигналы и сравнивать их с тем, что происходит на «выходе». Это — путь наблюдений. Но есть и другая возможность, более активная. Самим подавать на «вход» различные сигналы и наблюдать, что произойдет на «выходе».

Очевидно, второй путь более эффективен; в частности, он открывает возможность оперативной проверки возникающих гипотез и предположений относительно «конструкции» черного ящика. Изучив закономерности, связывающие между собой входные и выходные сигналы, можно, в принципе, построить модель, достаточно точно отражающую устройство черного ящика. Астрофизики решают аналогичные задачи. Большинство космических объектов — черные ящики, внутреннее строение которых, т. е. происходящие в них физические процессы, можно изучать лишь по внешним проявлениям.

Однако положение астрономов осложняется, по меньшей мере, двумя обстоятельствами. Во-первых, они лишены возможности экспериментировать, а могут лишь наблюдать. Во-вторых, большинство космических черных ящиков — это ящики, у которых нет «входов».

Во всяком случае, эти «входы» в. настоящее время нам неизвестны. Например, мы не знаем таких внешних воздействий, которые могли бы изменить течение физических процессов на Солнце. Есть, правда, экстравагантная гипотеза, принадлежащая Э. Броуну, гипотеза, согласно которой периодические колебания солнечной деятельности связаны с приливными возмущениями со стороны планет. Однако пока это всего лишь предположение…

Впрочем, среди космических объектов имеются и такие, для которых внешние воздействия играют существенную роль. В частности, любопытные явления были обнаружены в так