Литвек - электронная библиотека >> Дмитрий Елисеев >> Математика и др. >> Рассказы о математике с примерами на языках Python и C >> страница 13
0;                            \n" \

"  unsigned int val = input[i];             \n" \

"  for(unsigned int p=2; p<=val/2; p++) {   \n" \

"    if (val % p == 0)                      \n" \

"       return;                             \n" \

" }                                         \n" \

" output[i] = 1;                            \n" \

"}                                          \n" \

"\n";

Суть кода проста. Массив input хранит числа, которые нужно проверить, функция get_global_id возвращает индекс задачи, которую выполняет данное ядро. Мы берем число с нужным индексом, проверяем его на простоту, и записываем 0 или 1 в зависимости от результата, в массив output.

2. Инициализировать подготовку вычислений:

int gpu = 1;

clGetDeviceIDs(NULL, gpu ? CL_DEVICE_TYPE_GPU : CL_DEVICE_TYPE_CPU, 1, &device_id, NULL);

cl_context context = clCreateContext(0, 1, &device_id, NULL, NULL, &err); cl_command_queue commands = clCreateCommandQueue(context, device_id, 0, &err);

На этом этапе можно выбрать где будут производиться вычисления, на основном процессоре или на GPU. Для отладки удобнее основной процессор, окончательные расчеты быстрее на GPU.

3. Подготовить данные:

#define DATA_SIZE 1024

cl_uint *data = (cl_uint*)malloc(sizeof(cl_uint) * DATA_SIZE);

cl_uint *results = (cl_uint*)malloc(sizeof(cl_uint) * DATA_SIZE);

4. Загрузить данные и программу из основной памяти в GPU:

cl_program program = clCreateProgramWithSource(context, 1, (const char **) & KernelSource, NULL, &err);

clBuildProgram(program, 0, NULL, NULL, NULL, NULL);

cl_kernel kernel = clCreateKernel(program, "primes", &err);

cl_mem output = clCreateBuffer(context, CL_MEM_WRITE_ONLY, sizeof(cl_uint) * count, NULL, NULL);


clEnqueueWriteBuffer(commands, input, CL_TRUE, 0, sizeof(cl_uint) * count, data, 0, NULL, NULL);

clSetKernelArg(kernel, 0, sizeof(cl_mem), &output);


clGetKernelWorkGroupInfo(kernel, device_id, CL_KERNEL_WORK_GROUP_SIZE, sizeof(local), &local, NULL);

5. Запустить вычисления на GPU и дождаться их завершения:

global = DATA_SIZE;

clEnqueueNDRangeKernel(commands, kernel, 1, NULL, &global, &local, 0, NULL, NULL);

clFinish(commands);

6. Загрузить результаты обратно из GPU в основную память:

clEnqueueReadBuffer( commands, output, CL_TRUE, 0, sizeof(cl_uint) * count, results, 0, NULL, NULL );

7. Освободить данные:

free(data);

free(results);

clReleaseMemObject(input);

clReleaseMemObject(output);

clReleaseProgram(program);

clReleaseKernel(kernel);

clReleaseCommandQueue(commands);

clReleaseContext(context);

Как можно видеть, процесс довольно-таки громоздкий, но оно того стоит. Для примера, проверка простоты 250000 чисел заняла на процессоре Core i5 около 6 секунд. И всего лишь 0,5 секунд заняло выполнение вышеприведенного кода на встроенной видеокарте. Для дешевого нетбука с процессором Intel Atom этот же код выполнялся 34 секунды на основном процессоре, и 6 секунд на GPU. Т. е. разница весьма прилична.

Разумеется, еще раз стоит повторить, что «игра стоит свеч» лишь в том случае, если задача хорошо распараллеливается на небольшие блоки, в таком случае выигрыш будет заметен.

Владельцы видеокарт NVIDIA (особенно игровых и достаточно мощных) могут также посмотреть в сторону библиотеки NVIDIA CUDA, расчеты с ее помощью должны быть еще быстрее.

20. Приложение 2 - Быстродействие языка Python

Язык Python очень удобен своей краткостью и лаконичностью, возможностью использования большого количества сторонних библиотек. Однако, один из его минусов, который может быть ключевым для математических расчетов — это быстродействие. Python это интерпретатор, он не создает exe-файл, что разумеется, сказывается на скорости выполнения программы.

Рассмотрим простой пример: рассчитаем сумму квадратов чисел от 1 до 1000000. Также выведем время выполнения программы.

Программа на языке Python выглядит так:

import time


start_time = time.time()


s = 0

for x in range(1,1000001):

    s += x * x


print("Sum={}, T={}s".format(s, time.time() - start_time))

Результаты работы:

Sum = 333333833333500000, T = 0.47s

Учитывая, что чисел всего миллион, не так уж и быстро. Попробуем ускорить программу, для этого по возможности используем функции встроенных библиотек. Они зачастую написаны на C, и работают быстрее.

import time


start_time = time.time()


l = range(1000001)

s = sum(x * x for x in l)


print("Sum = {}, T = {}s".format(s, time.time() - start_time))

Результаты работы:

Sum = 333333833333500000, T = 0.32s

Быстрее, но лишь чуть-чуть. К тому же, данный код хранит весь массив в памяти, что неудобно.

И наконец, призываем «тяжелую артиллерию»: напишем программу на языке C. Код выглядит так:

#include <stdio.h>

#include <time.h>


int main()

{

  clock_t start = clock();


  unsigned long long int sum = 0, i;

  for(i=1; i<1000001; i++) {

    sum += i*i;

  }


  clock_t end = clock();

  printf("Sum = %llu, T = %fs", sum, (float)(end — start)/CLOCKS_PER_SEC);

  return 0;

}

Как можно видеть, он ненамного сложнее python-версии. Перед запуском программы, ее надо скомпилировать, выполнив команду C:\GCC\bin\gcc.exe "Appendix-2 - speedTest.c" -o"Appendix-2 - speedTest". Результат очевиден: T = 0,007 секунд. И еще чуть-чуть: добавляем флаг оптимизации по скорости, выполнив команду C:\GCC\bin\gcc.exe "Appendix-2 - speedTest.c" -o"Appendix-2 - speedTest" -O3. Результат: 0,0035 секунд, разница в быстродействии более 100 раз!

Увы, в более сложных задачах такого прироста реально не бывает (в последнем примере очень короткий код, который видимо полностью помещается в кеш-памяти процессора), но на некоторое улучшение быстродействия можно рассчитывать. Хотя переписывание программы — это крайний случай, сначала целесообразно поискать стандартные библиотеки, которые возможно уже решают данную задачу. К примеру, следующий код на языке Python, вычисляет сумму элементов массива за 0.1 с:

a = range(1000001)

s = 0

for x in a:

    s += x

print(s)

Можно использовать встроенную функцию sum:

a = range(1000001)

s = sum(a)

print(s)

Данный код выполняется за 0,02 секунды, т. е. в 5 раз быстрее первого варианта. Но разумеется, если заранее известно, что задача состоит в обработке большого набора чисел (например поиск простых чисел или магических квадратов), то может быть более целесообразным сразу писать программу на С или С++, в принципе это не намного сложнее, а работать программа будет быстрее.

Заключение

На этом данная книга закончена, хотя надеюсь, что не навсегда — по возможности и по мере появления новых идей, новые главы будут дописываться. Автор надеется, что хоть немного удалось познакомить читателей с увлекательным миром математики и программирования.


Продолжение следует.


Обо всех найденных неточностях или дополнениях просьба писать на электронную почту dmitryelj@gmail.com. Наличие новой версии можно проверить на странице http://dmitryelj.spb.ru/math.htm.


ЛитВек: бестселлеры месяца
Бестселлер - Дебби Харри - Сердце из стекла. Откровения солистки Blondie - читать в ЛитвекБестселлер - Пег Стрип - Нелюбимая дочь. Вопросы и ответы - читать в ЛитвекБестселлер - Фредрик Бакман - Тревожные люди - читать в ЛитвекБестселлер - Тара Конклин - Последний романтик - читать в ЛитвекБестселлер - Наринэ Юрьевна Абгарян - Симон - читать в ЛитвекБестселлер - Роберт Лихи - Техники когнитивной психотерапии - читать в ЛитвекБестселлер - Гарольд Мазур - Зарубежный детектив. Компиляция. Романы 1-11 - читать в ЛитвекБестселлер - Михаил Викторович Зыгарь - Все свободны. История о том, как в 1996 году в России закончились выборы - читать в Литвек