Литвек - электронная библиотека >> Борис Иванович Смагин >> Детская образовательная литература >> Вблизи абсолютного нуля >> страница 27
жидким водородом требует различных предосторожностей.

Другое дело — жидкий азот. Вот он покоится в большом металлическом дьюаре. Правда, с виду и азот ведет себя беспокойно: кипит на воздухе. Небольшие струйки пара вырываются наружу. Но это никого не пугает.

Выплеснем из дьюара немного жидкости. Смешные шарики покатились по полу. И через секунду испарились. Жидким азотом брызнем на руку. Ничего страшного не произойдет! Мимолетный небольшой ожог, как будто легонько прошлись по руке крапивой.

От тепла человеческого тела жидкий азот мгновенно вскипает. И серьезных неприятностей причинить не может. Правда, особенно зевать не надо. Все-таки температура почти что минус 200 градусов!

Криостаты, в которых ученые добиваются встречи с абсолютным нулем, на вид довольно простые. В большом дьюаре — жидкий азот. Внутри его дьюар меньшего размера. В нем — жидкий гелий. От этого дьюара тянутся трубы насосов. Если откачивать жидкий гелий, можно еще сильнее понизить температуру. Ведь и в этом случае самые быстрые молекулы улетучатся. Значит, жидкость станет еще холоднее. Так и добираются ученые до десятых долей градуса. То есть к самому-самому абсолютному нулю.

На одной из установок нас встретил твердый гелий.

У атомов гелия также есть две разновидности — два изотопа. Они называются гелий-3 и гелий-4 (Не-3 и Не-4). Цифры 3 и 4 означают, что атом гелия в три или четыре раза тяжелее атома самого легкого элемента — водорода. Гелий-3 начали изучать совсем недавно. Толком узнали его лишь за последние десять лет. Он оказался куда «покладистее» обычного изотопа — гелия-4. Например, легко замерзает, превращается в твердое тело. Сверхтекучести в нем нет. Кроме того, этот редкий изотоп отличается еще рядом особенных свойств. Вот почему ученые рьяно взялись за изучение именно гелия-3.

В окуляры зрительной трубы видна небольшая трубочка. Там две линии перехода. Две потому, что внизу расположен гелий-4, а сверху него немного жидкого гелия-3. Они замерзают при разных температурах.

Температура понижается. И вот жидкость мутнеет. Это кристаллики твердого гелия заполнили трубку. Температура поднялась, снова перед глазами жидкость.

Как-то странно себя чувствуешь, когда вот тут, рядом с тобой, расположены такие сказочно низкие температуры. А представьте себе, что этот холод вдруг выскочит из своего помещения, из криостата, и ринется в комнату. Даже страшно подумать! Мигом все бы обледенело. Ни одного живого существа не осталось бы вокруг!

Когда-то давно ученые стремились получить очень низкие температуры, добраться до них. Теперь это не проблема. Теперь они хорошо умеют это делать. И уже используют сверххолод для того, чтобы получше изучить строение вещества. Ведь в сверххолоде и разыгрываются странные процессы и некоторые свойства веществ проявляются особенно ярко.

Скорости движения молекул малы, и самые сокровенные действия их становятся открытиями. Тут изучают и электрические свойства вещества, и магнитные. Добираются даже до атомных ядер. С ними тоже происходят различные интересные превращения, когда вещество попадает в непосредственную близость к абсолютному нулю. И каждый раз ученые обнаруживают еще что-то интересное, что-то полезное. Сверххолод уже принес людям очень много добра. В его присутствии осуществляются порой самые смелые фантазии. Взять хотя бы эту.

Сверххолод и тепловой луч

Сверххолод и сверхжара. Температура, при которой замерзает все живое и почти все неживое. И вдруг из этих чертогов Снежной Королевы летит тонкий луч, для которого нет никаких преград, луч, сжигающий все на своем пути.

Помните, в замечательной повести Алексея Толстого два человека рассматривают металлическую доску, на которой прожжены слова: «Инженер Гарин… проба»…

Гиперболоид инженера Гарина? Да, это сделал инженер Гарин — изобретатель, решивший стать Владыкой Мира.

Прибор, о котором мы расскажем, в принципе другой. Но внешне они похожи. Гиперболоид, придуманный писателем Алексеем Толстым, и лазер, рожденный советскими учеными Басовым и Прохоровым, получившими недавно за эту работу звание лауреатов Ленинской премии. Скоро подобные «гиперболоиды» пойдут на заводы, займут место на космических кораблях и далеких маяках межпланетных и межзвездных трасс. Многие из них наденут на себя чехол из сверххолода.

Вблизи абсолютного нуля. Иллюстрация № 23 Вблизи абсолютного нуля. Иллюстрация № 24
Десять лет тому назад ученым стало ясно, что этот аппарат совсем не выдумка досужего ума. Его можно и нужно сделать. Только, разумеется, совсем не для того, чтобы уничтожать, сжигать, душить. Созидательный труд — вот чем займутся световые лучи. Луч лазера уже сейчас обрабатывает металлы и самые твердые материалы: режет, сваривает, сверлит тончайшие отверстия. В будущем световой луч, собранный в тонкий пучок, полетит на миллиарды километров не ослабевая, придет к месту назначения таким же, каким и вышел. Космическая связь, связь на Земле, может быть, передача на расстоянии энергии — без проводов, без потерь!

Как же это все происходит? И при чем здесь абсолютный нуль?

С первых страниц этой книги мы уже не раз говорили, что Природа наполнила все тела энергией. Но сделала это весьма осторожно. Запасов энергии у тела хоть отбавляй. А вот отдать ее оно может далеко не всегда. Кладовых вокруг нас много. Но вот попробуйте открыть их. Замки — невероятно хитрые, ключи потеряны, у дверей поставлены могучие часовые.

Но человек и умнее и сильнее этих стражей. Так постепенно открываются заветные двери, освобождается веками скрытая энергия.

Сначала люди научились получать энергию, сжигая горючие вещества. При этом мы пользуемся лишь крошечной частицей энергии, скрытой в них. Затем добрались до энергии атомной, термоядерной. А на очереди еще много других «отсеков» кладовой энергии, заполненных еще богаче, еще больше.

И молекулы и атомы обмениваются энергией, передают ее только определенными порциями — квантами. Мы помним, что это один из главных законов «странного» микромира — мира мельчайших частичек. Молекулы как бы напоминают сосуд с черточками на стенках. Можно доливать сосуд только до определенной черты. Мало нальешь — он запросит еще, много нальешь — как только представится возможность, сосуд избавится от лишнего. «Содержимое» сосуда — это энергия. Ученые говорят так: каждой черточке соответствует определенный запас энергии молекулы. Молекула может переходить из одного состояния в другое. В этом случае она или