Литвек - электронная библиотека >> Михаил Борисович Черненко и др. >> Технические науки >> Неоконченная история искусственных алмазов >> страница 42
наутро, когда Бакуль, согласно уговору, пришел снова, хозяину пришлось еще раз извиниться.

На резку кристалликов тоже ушел целый день.

Наконец, гранильщик — фамилия его Нойенс, и он работал в алмазном деле тоже почти сорок лет — нашел ось. И камешки стали граниться в простейшую классическую форму для мелких бриллиантов, ее называют 3/8. Они были маленькие, 50 штук на карат (это значит — по четыре еотых грамма), по миллиметру с небольшим в диаметре, но это были прозрачные ювелирные камни. Большинство желтого цвета, а 42 — белые, чистой воды.

На другой день Бонруа положил их в партию ютовых бриллиантов и понес к коллегам — лучшим антверпенским ювелирам.

И спросил одного из них, что это такое.

«Да ничего особенного, — сказал коллега. — Что тут спрашивать? Ну, обыкновенные мелкие Сьерра-Леоне. Что с того?»

Он пошел ко второму коллеге, и там повторилось то же самое. И третий ювелир не увидел в бриллиантах ничего особенного — даже самый опытный глаз не смог отличить их от «обыкновенных». И тогда же, в первых числах ноября 1967 г., в Антверпене, в мастерской одного из тех ювелиров, которым Бонруа показывал камешки после огранки, были изготовлены два кольца и украшены синтетическими бриллиантами из Киева. Имена дам, получивших право носить их, участники этой истории, как настоящие рыцари, огласке не предают. (Впрочем, в мае 1973 г., на заседании Президиума Академии наук СССР, на котором был доклад о синтезе алмазов, одно из этих колец присутствующим было показано.)


В десятках, а может быть, и в сотнях лабораторий многих стран сотни, а может быть, и тысячи исследователей продолжают поиск, начавшийся двести с лишним лет назад.

Одни возлагают надежды на металлические расплавы. Семь лет работал Джон Бринкман над тем, чтоб ускорить рост алмазных кристаллов. Заменял серебро сурьмой и свинцом. Заменял графитовый тигель замкнутой системой из танталовых, молибденовых, вольфрамовых трубок и через них прокачивал науглерожепный расплав. Варьировал концентрацию углерода и температуру. В 1964 г. фирма «Юнион карбайд» запатентовала все эти новшества. В патенте сказано, что можно вырастить алмазный монокристалл любого размера… Дело не ограничилось патентом, и в 1970 г. на одной из американских промышленных выставок желающим предлагалось купить лицензию: производство алмазов размером… до 30 мм.

Однако до сих пор ни одного искусственного алмаза подобной величины никто не видел. И трудно сказать, в чем тут дело — в технических трудностях или, может быть, в несообразной стоимости.

Другие специалисты отдают предпочтение газу — метану. Валентин Николаевич Бакуль, например, уверяет, что в ближайшие годы можно будет создать производство, оснащенное аппаратами, подобными в принципе тому, что работал у Дерягина. И что эти аппараты будут давать урожай готовых бриллиантов, правда, не очень часто, потому что бриллианты будут расти довольно долго. Можно рассчитывать, скажем, на один раз в год — как урожай пшеницы.

Продолжают работать и те, кто надеется на сверхвысокие давления.


Кто будет первым?

Стоит ли задаваться таким вопросом? Ответить на него пока вряд ли кто-нибудь сможет. А потом: так ли уж это существенно?

Важнее было бы предугадать, какой путь окажется наиболее экономичным. Или наиболее соответствующим «технологии» рождения природных алмазов.

Но и это, пожалуй, не самое любопытное. Интереснее всего, конечно же, было бы попытаться представить себе, какими еще удивительными гранями повернется к человеку этот самый удивительный на земле кристалл. И какое место в нашей цивилизации займет он тогда, когда станет таким же обыкновенным веществом, как сегодня, скажем, поваренная соль.

Кстати, углерода на нашей планете в десятки раз больше, чем хлора. Да и в космосе он весьма и весьма обыкновенен…