Литвек - электронная библиотека >> Виктор Гаврилович Лёвин >> Философия >> Принципы системного моделирования

Министерство образования Российской Федерации

Государственное образовательное учреждение

высшего профессионального образования

Самарский государственный технический университет


В.Г. Левин


ПРИНЦИПЫ СИСТЕМНОГО МОДЕЛИРОВАНИЯ


Методологический анализ


Самара 2004

ББК      32.81


Принципы системного моделирования: Методол. анализ. Левин В.Г. СамГТУ, 2004г., 60 с.

Репринтное издание с 1996 г.


Исследуется формирование методологии системного моделирования, прослеживается эволюция его общих принципов на материале истории научного познания. Анализируются праксеологические основания и прикладные проблемы системно-моделирующей деятельности.


Предназначена для научных работников, преподавателей, аспирантов и студентов вузов.


ISBN 5-230-06555-9      ©      Лёвин В.Г. Самарский государственный

технический университет, 2004.


ВВЕДЕНИЕ


В наше время сохраняет свою актуальность анализ методологических тенденций развития научного познания и практической деятельности. В его рамках исследуются условия применения различных методов, подходов и средств познания, степень их развития, особенности взаимодействия и перспективы усовершенствования. Накопленные методологические разработки помогают оптимизировать принципы и программы исследовательской и практической преобразующей деятельности, расширяют возможности эффективного управления наукой и ее практическими приложениями.

Главная проблема, которая анализируется в данной работе, связана с раскрытием моделирующей функции научного познания в сфере системных исследований. Указанная функция трактуется в самом широком плане как использование приближенных к реальности форм и способов описания и объяснения мира, основанных на учете практических возможностей субъекта науки. При этом берется во внимание, что моделирующее научное познание, развиваясь в рамках системной парадигмы, изменяет представление о собственном предмете исследования. Оно осуществляет переход от изучения монообъектов к исследованию взаимодействий. Отражением такого перехода стало широкое использование в научном моделировании представления о состоянии объекта в различные моменты его существования, а также применение языка событий для описания смены подобных состояний. Указанные моделирующие средства играют, например, значительную роль в современной физике, но они же используются в рамках статистического подхода к объектам науки. Вместе с тем они служат средством описания алгоритмов изменения кибернетических систем.

Новая предметная область научного познания рассматривается в предлагаемой работе в контексте исторической эволюции принципов системного моделирования. Ее первая фаза породила методы функционального описания сложных объектов, тогда как современный этап связан с формированием принципов, ориентированных на описание динамики сложного поведения. Дальнейший прогресс методов системного моделирования требует усиления внимания к принципам описания объектов, способных к самоорганизации.

В противовес сциентистской концепции, рассматривающей принципы системного моделирования лишь в контексте эволюции научного стиля мышления, в предлагаемой работе анализируется праксеологическая составляющая системного моделирования.

Последняя истолковывается здесь с учетом процесса системизации производственной практики, включающей становление системы "наука-техника". Одновременно исследуются системные детерминанты выработки сложных социальных решений, учет которых важен для оценки специфики моделирования в сфере социальной деятельности.

Глава 1. СИСТЕМНЫЕ МОДЕЛИ В НАУЧНОМ ПОЗНАНИИ


1.1. ПРИНЦИП СИСТЕМНОСТИ КАК МЕТОДОЛОГИЧЕСКИЙ РЕГУЛЯТИВ НАУЧНОГО МОДЕЛИРОВАНИЯ


По своему содержанию принцип системности ближе всего стоит к принципу связи. Требование выявлять связи между объектами того или иного рода относится к числу основных, на которые опирается принцип системности. Однако между принципом системности и принципом связи нет полного совпадения. В философско-методологической литературе встречается иногда утверждение, что системность - это и есть связанность объектов /1/. Тем не менее, подобное определение недостаточно, поскольку не фиксирует специфического признака системности и не даёт средств для выявления самостоятельного значения принципа системности в научном познании.

В качестве критерия системной определённости объектов нередко используется различие между системообразующими и несистемообразующими связями. Некоторые исследователи указывают, например, на интегративные связи как базовые для исследования системных объектов. В других случаях к системообразующим относят связи органического типа в отличие от механических связей. Системные связи отождествляются также с локализующими связями. В этом случае подчёркивается целокупный характер системных объектов, их отграниченность от других систем и от среды вообще /2/. Система рассматривается и как объект, имеющий интенсивные внутренние связи и относительно слабые внешние взаимодействия /3/. Уместно подчеркнуть, что выявление главного условия системности является трудной проблемой. Очевидно, однако, что уточнение базового признака системности следует искать на путях последовательной конкретизации представления о связанности вещей. Из этого проистекают и особенности системного моделирования реальных объектов, а также моделирования деятельности по созданию искусственных систем. Необходимо учитывать, например, что хотя системность предполагает взаимодействие объектов, но лишь такое, которое строится на основе избирательного сродства и осуществляется по законам подобного сродства. В системах доминирует особый тип обусловленности объектов, в рамках которой последние превращаются в носителей совместных функций, поддерживающих существование целого. Так, в товарном обществе независимые друг от друга производители товаров, налаживая обмен, вступают в необходимые отношения, при которых отдельные частные работы реализуются как звенья совокупного общественного труда. Аналогично дело обстоит в живом организме, где функционирование отдельных органов образует связанную цепь в жизнеобеспечении всего организма.

Итак, в процессе системного моделирования мы обязаны учитывать, что каждая система дифференцируется на компоненты и