Литвек - электронная библиотека >> Николай Иванович Конон >> Математика >> Симметричные числа и сильная гипотеза Гольдбаха-Эйлера

Николай Конон Симметричные числа и сильная гипотеза Гольдбаха-Эйлера

Введение

Известны многочисленные свойства ряда натуральных чисел. Одно из них состоит в том, что для любого числа на числовой оси найдется пара чисел, отстоящих слева и справа на одинаковое числовое расстояние от указанного числа. Данное очевидное утверждение исходит из самой природы ряда натуральных чисел, заключающееся в том, что каждое следующее число ряда формируется путем прибавления единицы к текущему числу. Таким образом, уже число 2 имеет пару чисел в составе 1 и 3, отстоящих от числа 2 влево и право ровно на единицу. А далее с увеличением самого числа, оно будет иметь хотя бы одну пару чисел, отстоящих от него на единицу. Указанное свойство и будет исследоваться в настоящей работе с целью использования при рассмотрении сильной гипотезы Гольдбаха-Эйлера [1].


1. Симметричные пары чисел ряда натуральных чисел

Рассмотрим множество целых неотрицательных чисел, таких, которые включают целые положительные числа из ряда натуральных чисел и добавленное в данное множество число ноль, т.е. N+0 = N+U {0} [1].

Исследуем числовую ось натурального ряда N+0 (рис. 1)


N+0 = {0 1 2 3 4 5 6 7 8 …….…a……..n……..b ………………… k–1 …k}

Рис. 1


Выделим для любого числа n, начинающегося с числа 1 пару чисел a и b (см. рис. 1), при чем, пара чисел a и b соответствуют условию, a < b, такое, что выполняется следующее равенство:

n – a = b – n. (1.1)

Назовем указанную пару чисел a и b, отвечающую условию (1.1), симметричной парой любого натурального числа n.

Дальнейшие исследования ряда натуральных чисел N+0 показывает, что указанная пара чисел a и b под условием равенства (1.1) обладает интересными и важными свойствами, а именно:

1) Числа a и b равноудалены от числа n слева и справа на числовое расстояние δ.

2) Числовое расстояние δ, на которое равноудалены числа a и b от числа n равно:


δ = n – a = b – n. (1.2)


3) Из выражения (1.2) получаем:


a = n – δ; b = n + δ. (1.3)


4) При этом из выражения (1.2) также имеем:


n = a + δ = b – δ. (1.4)


5) Из выражения (1.3) следует, что сумма симметричной пары чисел a и b является четным числом и равна


a + b = 2n. (1.5)


6) Из выражения (1.3) также следует, что разность пары чисел a и b также является четным числом и равна


b – a = 2δ. (1.6)


Назовем эту разность (1.6) размахом симметричной пары.

7) Из выражения (1.6) вытекает


δ =(b – a)/2. (1.7)


8) Можно утверждать, и это очевидно, что количество симметричных пар a и b на числовой оси равно значению n.

Важно исследовать следующий вопрос, в каких пределах изменяется числовое расстояние δ.

Для этого обратимся к числовой оси (рис.1) и построим таблицу 1 множеств симметричных пар при разных значениях n.


Таблица 1


Число n

Симметричная пара чисел {(a, b)} числа n

Числовое расстояние δ


1

{(0,2)}

1


2

{(1,3),(0,4)}

1,2


3

{(2,4),(1,5),(0,6)}

1,2,3


4

{(3,5),(2,6),(1,7),(0,8)}

1,2,3,4


.

……………….

………


n

{(n–1, n+1), (n–2, n+2),…… (1, n+n-1), (0, n+n)}

1,2,3,.…n–1,n


где a и b – симметричные пары для числа n.

Очевидно, и исходя из свойств натуральных чисел, что числовое расстояние δ, равное половине размаха симметричной пары (см. 1.7), изменяется от 1 до n, и по значению не больше самого числа n.

Назовем числовое расстояние δ шагом симметричной пары (шагом симметрии), который меняется

δ = (1,2,3,……… n). (1.8)

Из свойства 6 и выражения (1.6), очевидно, что размах симметричной пары равен удвоенному значению шага симметрии.

Исходя из данного определения и исследованных выше свойств симметричных пар, сформулируем следующую лемму.

Лемма 1: Любое натуральное число n, начиная с числа 1, имеет симметричные пары в количестве, равном самому значению натурального числа.

Доказательство. Из свойств натуральных чисел N+0 известно, что они являются арифметической прогрессией, такой при которой любое натуральное число можно записать в виде

ni+1 = ni + 1, (1.9)

Исходя из вышесказанного в (1.9) можно записать

ni+δ = ni + δ, (1.10)

где δ число равное 1, 2, 3.….

Тогда можно записать, что и

ni-δ = ni – δ. (1.11)

Отсюда имеем

ni = ni-δ + δ. (1.12)

Следовательно, из (1.8) и (1.9) получаем

ni – ni-δ = ni+δ – ni = δ. (1.13)

Далее если принять ni+δ = b, ni-δ = a, ni = n, то в новых обозначениях можно записать

n – a = b – n = δ. (1.14)

Таким образом, мы получили выражение (1.2), откуда следует (1.3), т.е.

a = n – δ; b = n + δ.

Ввиду того, что δ = 1, 2, 3.…. n, получаем количество пар a и b равное n. Так как указанные пары удовлетворяют свойствам 1) – 8), следует, что они симметричны, а это и доказывает лемму.

В результате, выше определено понятие симметричных пар и их шаг симметрии, которые представляют особый интерес исследования настоящей работы.


2. Исследование множеств симметричных пар

Рассмотрим множество C симметричных пар числа n, такое что,

C = {an,…ai,…a3, a2, a1, b1, b2, b3,… bi…bn }, (2.1)

где ai, bi. – симметричные пары, удовлетворяющие свойствам 1) – 8).

Для примера рассмотрим число 10. Тогда множество C симметричных пар числа 10 будет C = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}

Представим множество симметричных пар C в виде двух других множеств A и B, которые состоят из множества

A = {a1, a2, a3,…an } и множества B = {b1, b2, b3,…bn }. (2.2)

Очевидно C = A U B.

Для нашего примера эти множества будут

A = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} и B = {11, 12, 13, 14, 15, 16, 17, 18, 19, 20}.

Парные элементы приведенных множеств также удовлетворяют свойствам 1) – 8). Очевидно, что мощности обоих множеств |A| и |B| одинаковы и равны n.

Следует заметить, что эти множества взаимосвязаны, при чем, элементы в указанных множествах имеют взаимно однозначное соответствие одного множества к другому, и они в совокупности составляют симметричные пары (ai, bi).

Действительно, имеем a1 = n–1, a2 = n – 2, a3 = n – 3, …ai = n – i, …….. an-3 = 3, an-2 = 2, an-1 = 1, an = 0, и b1 = n + 1, b2 = n + 2, b3 = n + 3, …….. bi = n + i,……. bn-1 = n + n – 1, bn = n + n, то есть, такое взаимное соответствие можно выразить следующей зависимостью

ai = n – i, bi = n + i, (2.3)

где i = 1,2,3, …….n.

Следовательно, для симметричных пар выражение (1.5) поэлементного соответствия будет выглядеть

ai + bi = 2n и bi – ai= 2i, (2.4)

где i = 1,2,3, …….n.

Отсюда видим, что шаг симметрии равен номеру симметричной пары, т.е. δ=i.

Анализируя выражения (2.3) и (2.4), можно видеть, что множества A и B в свою очередь состоят из подмножеств нечетных и четных чисел, т.е. можно записать

A = nchA U chA;

B = nchB U chB, (2.5)

где nchA и chA – подмножества нечетных и четных чисел множества A;

nchB и chB – подмножества нечетных и четных чисел множества B.

Для указанного выше примера, имеем

nchA= {1, 3, 5, 7, 9} и chA= {0, 2, 4, 6, 8}.

nchB= {11, 13, 15, 17, 19} и chB= {12, 14, 16, 18, 20}.

Очевидно, и это не требует доказательств, что мощности подмножеств |nchA| и |chA| одинаковы, т.е. равны. Также можно сказать и о подмножествах |nchB| и |chB|, мощности