Литвек - электронная библиотека >> Александр Фёдорович Александров >> Эзотерика, мистицизм, оккультизм >> Тайны магических цифр >> страница 5
Иллюстрация № 2">
Единственность точки А делает ее уникальной или выделенной на плоскости, что и характеризует качества, заданные одной цифрой, как слабые, но стремящиеся к выделению и показу, словно одна точка — очень слаба, но она одна-единственная на плоскости. Геометрически это соответствует нулевой размерности dim=0 (это точка на плоскости).

Интересно, что нулевая размерность еще более от­четливо показывает слабость качества, заданного одной цифрой.

Две цифры. На плоскости заданы две точки А и В, которые неизбежно задают прямую АВ или ВА в за­висимости от начальной точки (рис. 3).  


Тайны магических цифр. Иллюстрация № 3
 Особенности прямой заключаются в том, что она однозначно определяет направление движения, что говорит об определенности и конкретности пути. Для качеств, характеризующихся двумя цифрами, это оз­начает свободу их проявления в любой ситуации, что и будет означать естественную норму: появляется не­обходимость в проявлении того или иного качества и человек свободно делает это. С геометрической точки зрения, мы имеем одномерное пространство dim=1, которое еще раз подчеркивает однозначность в воз­можности применения качества.

Три цифры. Как известно, три точки задают кон­кретную плоскость, но в нашем случае более важно, что они определяют некоторую площадь S, ограни­ченную периметром треугольника ABC (рис. 4).


Тайны магических цифр. Иллюстрация № 4
Особенность случая заключаются в том, что из любой вершины треугольника мы можем наблюдать два равноценных направления на две другие верши­ны, что создает затруднение в выборе очередности в движении к одной из вершин фигуры. Точно такие же затруднения в проявлении конкретного качества испытает и человек, если данное качество задано тремя цифрами. Он как бы выжидает внешнего «на­падения» или изменения, которое однозначно опре­делило бы выбор движения. Можно сказать, что че­ловек проявляет свое качество только в том случае, когда у него не остается выбора и приходится дейст­вовать. Стоит отметить, что сила проявления качест­ва резко возрастает, так как мы имеем значительное усиление качества, отраженное площадью S треу­гольника ABC. Как только человек израсходует качество (весь его запас), он вновь будет ждать экстре­мальной ситуации, когда снова можно «выплеснуть запасы качества». Интересно, что для этого ему при­дется накопить силы для такого неожиданного и сильного проявления качества. С геометрической точки зрения мы рассматриваем двухмерное прост­ранство dim=2, что характеризует плоскости и пло­щади фигур.

Четыре цифры. В данном случае мы вынуждены выйти за пределы плоскости, так как только в этом случае мы сможем качественно изменить ситуацию, а не задавать новую плоскую фигуру (рис. 5а, б).


Тайны магических цифр. Иллюстрация № 5
Тайны магических цифр. Иллюстрация № 6
Как вы хорошо видите из рис. 5, в случае «б» имеется плоская фигура, что возвращает нас к пре­дыдущему случаю, когда качество задается плоско­стью, или dim=2. В случае «а» ситуация резко меня­ется, так как появляется новая размерность dim=3 (трехмерное пространство). Из точки А (вершина пи­рамиды) мы видим весь треугольник основания BCD, что в какой-то степени делает ситуацию схожей со случаем двух точек на плоскости, которые определя­ли прямую АВ. Именно поэтому случай с четырьмя цифрами также стабилен в своем проявлении качества, как и при двух цифрах. Различие заключается только в том, что сила самого качества резко увели­чивается до объема пирамиды V.

Пять цифр. Так как в предыдущем случае мы уже затронули максимальную для человека размер­ность dim=3 (трехмерное пространство), то в случае пяти точек нам будет очень сложно найти качествен­но новое решение, однако мы постараемся это сде­лать. Известно, что в геометрии существует теорема, утверждающая, что любые 5 (пять) произвольно взя­тых на плоскости точек определяют единственную кривую второго порядка (1 — окружность, 2 — эл­липс, 3 — параболу, 4 — гиперболу, все случаи вы­рожденной кривой мы рассматривать не будем). За­метим, что наличие именно пяти точек позволяет нам использовать данную теорему (рис. 6).


Тайны магических цифр. Иллюстрация № 7
Для иллюстрации этой теоремы вы можете взять любые пять точек на плоскости и, немного подумав, достаточно легко сможете определить, какая именно из указанных кривых проходит через взятые вами точки (чтобы не попасть в случае вырожденной кри­вой второго порядка, не ставьте три и более точек на одну прямую, так как в подобном случае линия должна будет выродиться (преобразоваться) в точку, пару пересекающихся, параллельных или совпадаю­щих прямых (одна прямая).

Чтобы у вас не появилось сомнений в совершенно новом изменении качеств при переходе к пяти циф­рам, попытаемся понять, каким образом появились сами названные нами кривые. Дело в том, что для их получения нам придется выйти в трехмерное прост­ранство и рассмотреть пересечение конической по­верхности (имеющей две собственные размерности) с плоскостью, которая также двухмерна. Из сказанно­го можно сделать вывод, что для получения кривых второго порядка нам приходится рассматривать мо­дель с четырьмя измерениями. В переносе на общее трехмерное пространство они дадут пересечение в ви­де кривой второго порядка. Интересно, что, занима­ясь когда-то дифференциальной геометрией, мне при­шлось исследовать взаимное расположение двух при­вычных нам плоскостей, но в четырехмерном прост­ранстве. Оказалось, что в пересечении этих плоско­стей образуются все разновидности кривых второго порядка, так что наша интерпретация через пересече­ние конической поверхности с плоскостью является моделью четырехмерного пространства, где рассмат­риваются две плоскости. Рассмотрим рис. 7.


Тайны магических цифр. Иллюстрация № 8
Коническая поверхность имеет размерность dim=2 и плоскость dim=2. Мы видим, что при враще­нии прямой АВ вокруг оси АС получим коническую поверхность, расположенную в трехмерном простран­стве. В случае 6 (а—г) мы видим пересечения кониче­ской поверхности с плоскостью, которая имеет раз­личное положение относительно конусов, этот случай соответствует пяти цифрам. Из рисунков понятно, что для получения кривой второго порядка прихо­дится использовать сложные построения, а это требу­ет максимальных усилий со стороны человека, все его силы концентрируются на проявлении данной
ЛитВек: бестселлеры месяца
Бестселлер - Тэмсин Федэл - Одна и счастлива: Как обрести почву под ногами после расставания или развода - читать в ЛитвекБестселлер - Элена Ферранте - Моя гениальная подруга - читать в ЛитвекБестселлер - Бет Шапиро - Наука воскрешения видов. Как клонировать мамонта - читать в ЛитвекБестселлер - Кент Бек - Экстремальное программирование: Разработка через тестирование - читать в ЛитвекБестселлер - Ли Бардуго - Шестерка воронов - читать в ЛитвекБестселлер - Евгений Львович Чижов - Темное прошлое человека будущего - читать в ЛитвекБестселлер - Михаил Лабковский - Хочу и буду: Принять себя, полюбить жизнь и стать счастливым - читать в ЛитвекБестселлер - Эрик Берн - Игры, в которые играют люди. Люди, которые играют в игры - читать в Литвек