Литвек - электронная библиотека >> Трофим Денисович Лысенко и др. >> Биология >> За материализм в биологии >> страница 3
положен принцип двойственного гена, о котором впервые говорил Соннборн. Согласно этому представлению, ген состоит из двух саморепродуцирующихся единиц: хромосомной единицы — хромогена и цитоплазматической единицы — цитогена, который связывается с хромогеном. Цитоген размножается независимо от хромогена.

Эта новая гипотеза явилась попыткой перебросить мост между учением о гене и фактами, которые выходили за теоретические рамки этого учения.

Гипотезой Линдегрена не исчерпываются поиски объяснений природы внеядерной наследственности. Появляются представления о вирусах-генах, о симбиотических саморепродуцирующихся частицах клетки (Lederberg, 1952). Представление о двойственной природе гена при этом сохраняется, бактериофаги рассматриваются как свободно живущие гены бактерий, которые, попадая в бактериальную клетку, прикрепляются к соответствующему участку ее хромосомы. При всем различии в характере этих спекулятивных построений итог их одинаков — все завершается геном. Возьмем в качестве примера уже упоминавшийся случай с наследованием цитохромоксидазы у дрожжей. По представлениям Эфрусси и Слонимского (Ephrussi, Slonimski, 1950), ядерный ген контролирует деятельность цитоплазматических единиц — плазмагенов, которые обеспечивают образование фермента цитохромоксидазы, но не сами, а под влиянием внешнего воздействия — специфического индуктора, в данном случае кислорода.

Между тем, противоречия между теорией гена и фактами, получаемыми в экспериментах в различных областях биологии, становились все более очевидными и не могли быть разрешены гипотезами, вроде приведенных выше. Поэтому все большее число ведущих генетиков, «удивившись» сперва отказу Гольдшмидта от гена, позднее присоединяется к его точке зрения (Stern, 1947; Demerec, 1955; Stadler, 1954 и Др.).

Лернер (Lerner, 1953), подводя итоги IX Международного генетического конгресса 1953 года, дал такую оценку состояния морганистской генетики: «Наиболее знаменательной тенденцией конгресса в Беляджио был фактический отказ от классического понятия гена, как предмета изучения».

Нельзя не подчеркнуть, что это «классическое понятие», которое так отстаивала морганистская генетика, Лернер объявляет наивным и упрощенческим. В связи с этим невольно вспоминаются упреки в адрес мичуринцев за недооценку результатов, достигнутых классической генетикой. Но ведь учение о гене рассматривалось всегда как важнейшее, центральное обобщение, как наиболее ценное достижение хромосомной теории наследственности. Поэтому, думается, что эти упреки было бы правильнее переадресовать в адрес самой формальной генетики, отказавшейся от представлений о гене и даже объявившей эти представления «наивными» и «детскими». Мичуринцы же в свое время правильно показали, что учение о гене, как не отражающее объективных закономерностей природы, не может сохраниться в науке.

Трудно предугадать, как бы выглядела генетическая теория после отказа от гена как единицы наследственности, если бы не были достигнуты значительные успехи в других разделах биологической науки, а также в изучении химии ядра и нуклеиновых кислот.

Какие же это достижения, оказавшие на морганистскую генетику столь существенное влияние и, более того, явившиеся основой построения новой теории гена?

Как на важнейшие из них укажем на следующие:

1) данные о трансформации[4] у бактерий, наступающей в результате действия специфической дезоксирибонуклеиновой кислоты (ДНК) и о трансдукции[5];

2) результаты цитофизического и цитохимического изучения ДНК в клетках;

3) новые представления о структуре молекулы ДНК.

Это, конечно, довольно грубая классификация, но она облегчит дальнейший анализ.

В 1928 году Гриффитц (Griffith, 1928) в опытах in vivo (т. е. на живом) в организме мышей изменил авирулентную (незаразную) R-форму II типа пневмококка в вирулентную (заразную) S-форму III типа. Это изменение произошло под влиянием убитых клеток S-формы, введенных мышам вместе с живыми клетками R-формы. Затем Даусон и Сиа (Dawson, Sia, 1931) установили возможность такого же превращения in vitro (т. е. вне организма, в искусственных условиях) при выращивании клеток R-формы II типа на средах, содержащих анти-R-сыворотку и убитые высокой температурой S-клетки III типа. Эллоуей (Alloway, 1932, 1933) показал, что стерильные вытяжки из S-клеток, лишенные форменных элементов, при добавлении их к среде оказались столь же активными, как и цельные клетки.

Эйвери, Мак-Леод и Мак-Карти (Avery, MacLeod, McCarty, 1944) опубликовали работу, в которой не только подтверждалась возможность трансформации, но был выделен и тщательно изучен трансформирующий агент; им оказалась ДНК. Трансформирующая активность последней исключительно велика. Разведение 1: 600 000 000 оказалось достаточным для направленного, специфического превращения одного типа пневмококков в другой.

Позднее Буавен (Boivin, 1947), а затем Эфрусси-Тейлор и Хочкис (Ephrussi-Taylor, 1951; Hotchkiss, 1951) установили специфичность действия ДНК, взятой из разных линий. В связи с этим Буавен писал, что каждому типу пневмококков (которых насчитывается около 100), как и каждому типу кишечных бактерий (их существуют сотни или тысячи типов) соответствует своя ДНК. Если в работе Эйвери и др. еще отмечалась возможность того, что трансформирующее начало принадлежит не самой ДНК, а какому-то другому веществу, адсорбированному ею, то Буавен уже со всей определенностью подчеркивал, что в случаях трансформации чистая ДНК способна передавать наследственные особенности. Данные по трансформации стали оцениваться как прямое доказательство генетической роли ДНК, а ген стал рассматриваться в качестве молекулы ДНК.

Приведенными примерами далеко не исчерпываются экспериментальные данные о трансформации. Это явление не ограничивается только миром микроорганизмов. Судя по имеющимся сообщениям, многообещающие результаты получены во Франции профессором Бенуа и его сотрудниками (Benoit, Leroy и др., 1957). В результате многократных инъекций уткам пекинской породы ДНК, выделенной из эритроцитов и из семенников уток породы Хаки, им удалось получить новую породу, названную Белоснежка.

Независимо от истолкования природы трансформации, уже сам факт ее обнаружения представляет исключительный практический интерес. Но результаты работ по трансформации важны и для познания природы наследственности. Наука обогатилась новыми неоспоримыми фактами получения направленных, адекватных изменений. Для мичуринской генетики подобные результаты не были неожиданными. Этим объясняется, в частности, что появившаяся в 1944 году статья Эйвери и его сотрудников была переведена и опубликована в журнале «Агробиология». Нам