ЛитВек: бестселлеры недели
Бестселлер - Ли Дуглас Брэкетт - Исчезновение венериан - читать в ЛитвекБестселлер - Аллен Карр - Легкий способ бросить пить - читать в ЛитвекБестселлер - Вадим Зеланд - Пространство вариантов - читать в ЛитвекБестселлер - Мария Васильевна Семенова - Знамение пути - читать в ЛитвекБестселлер - Элизабет Гилберт - Есть, молиться, любить - читать в ЛитвекБестселлер - Андрей Валентинович Жвалевский - Время всегда хорошее - читать в ЛитвекБестселлер - Розамунда Пилчер - В канун Рождества - читать в ЛитвекБестселлер - Олег Вениаминович Дорман - Подстрочник: Жизнь Лилианны Лунгиной, рассказанная ею в фильме Олега Дормана - читать в Литвек
Литвек - электронная библиотека >> Валентин Юрьевич Ирхин и др. >> Философия >> Критерии истинности в научном исследовании >> страница 2
примеры "первичности" физической теории по отношению к физическому эксперименту. В позитивном плане - это, прежде всего, одно из величайших творений человеческого разума - общая теория относительности (ОТО), созданная им в 1907-1915 гг. как достаточно формальная математическая конструкция и блестяще подтвержденная всеми последующими экспериментами и астрономическими наблюдениями. Первой такой проверкой было измерение отклонения лучей света в поле тяготения Солнца во время солнечного затмения 1919 года. Эти измерения, выполненные английской астрономической экспедицией под руководством А. Эддингтона, положили начало всемирной славе Эйнштейна. Отметим, что точность этих измерений была не слишком велика. Систематическая проверка предсказаний ОТО (включая существование гравитационных волн) с относительно высокой точностью стала возможна лишь!!! после открытия американскими астрономами Тейлором и Халсом редчайшего объекта - двойного пульсара - через 60 лет после создания теории. Интересно отметить, что, как показали исследования американского историка науки Д. Холтона, и в создании специальной теории относительности основную роль играли не экспериментальные данные (знаменитый опыт Майкельсона-Морли), а тщательный анализ трудностей и внутренних проблем теории электромагнитного поля, созданной Максвеллом. Та огромная роль, которую опыт Майкельсона-Морли играет в современных учебниках, обусловлена скорее педагогическими причинами - реальная история науки подгоняется в преподавании под расхожие представления, что теория основана на эксперименте! Впоследствии неоднократно сообщалось об "опровержениях" специальной и общей теории относительности, однако в конечном счете проверка выявляла несостоятельность этих экспериментов, теория же выходила из всех пере!!!дряг, оставаясь "белой и пушистой".

Творчество Эйнштейна предоставляет нам и "негативный" пример подчиненной роли физического эксперимента. Речь идет об эффекте Эйнштейна де Хааза (вращение ферромагнитного стержня при перемагничивании), открытого ими в 1915 году - в этой работе Эйнштейн выступал как экспериментатор! Опыты Эйнштейна и де Хааза подтвердили качественно и количественно блестящую идею молекулярных токов Ампера как причины магнетизма, и все было бы замечательно, если бы не одно обстоятельство. Ферромагнетизм - явление чисто квантовое, и классическое рассмотрение дает ответ, отличающийся от правильного в два раза! Именно этот неправильный результат и был подтвержден экспериментально. Это было результатом ошибки (впоследствии исправленной), о которой рассказал соавтор Эйнштейна по этой работе В. де Хааз (цитируется по книге А. Пайса "Научная деятельность и жизнь Альберта Эйнштейна"):

"Значения, которые мы получили [для некоторой величины], были равны 1,45 и 1,02. Второе значение почти равно классическому значению 1, поэтому мы решили, что первое значение оказалось слишком большим из-за погрешностей эксперимента. Мы не измеряли поле соленоида, а рассчитывали его... Мы также не измеряли намагниченность цилиндра, а рассчитывали или оценивали ее... Обо всем этом говорится в статье. Полученные предварительные результаты показались нам удовлетворительными, и легко понять, почему мы сочли значение 1,02 более подходящим".

В общем, как видно, шутливая формулировка закона Ома, данная датским физиком Розеном (см. сборник "Физики шутят"), вполне корректно описывает статус законов физики, устанавливаемых реальными людьми в реальном физическом эксперименте:

"Если использовать тщательно отобранные и безупречно подготовленные исходные материалы, то при наличии некоторого навыка из них можно сконструировать электрическую цепь, для которой измерения отношения тока к напряжению, даже если они проводятся в течение ограниченного времени, дают значения, которые после введения соответствующих поправок оказываются равными постоянной величине".

Для того, чтобы уменьшить влияние "субъективного фактора", в научных исследованиях часто выдвигается требование повторяемости и воспроизводимости результата эксперимента. С практической точки зрения, это означает, что сообщение об открытии нового физического явления будет игнорироваться (подобно, скажем, сообщению Б. Кабреры 1982 года об обнаружении магнитного монополя) до тех пор, пока оно не будет подтверждено в нескольких ведущих лабораториях. Конечно, при этом неизбежен элемент субъективности: сколько именно подтверждений нужно, какие именно лаборатории считать ведущими, и т.д. При достаточной затрате усилий статус новых утверждений может определиться быстро. Скажем, из двух претендующих на сенсационность физических открытий конца 80-х годов - высокотемпературная сверхпроводимость и "холодный термояд" - первое было почти сразу включено в "канон" современной науки !!!(в данном случае число подтверждений измеряется уже десятками, если не сотнями тысяч!), а второе отвергнуто как невоспроизводимое. Но опять-таки, если говорить о реальном содержании научных журналов, можно выделить достаточно широкую полосу "серой" науки результаты, которые никто не может (или не хочет) ни подтвердить, ни опровергнуть. Причем далеко не всегда речь идет о пустяках. В любом случае, требование воспроизводимости слишком напоминает предложение решать научные вопросы голосованием (с введением высоких цензов - требование, чтобы результаты были подтверждены именно в ведущих лабораториях и т. п.). Но как же быть со словами Галилея, что в науке мнение одного может быть ценнее, чем мнение тысячи?

Иногда требование воспроизводимости считается критерием, отличающим науку от "лженауки", и распространяется даже на гуманитарные дисциплины. В этой связи приведем слова известного современного физика А. Б. Мигдала:

"Даже в физике, химии и астрономии не всегда удается повторить условия эксперимента. Как быть с биологией или психологией, где объекты отличаются друг от друга? Можно ли и там требовать повторяемости и воспроизводимости результатов? Да, можно и нужно - без этого нет науки! Разумеется, здесь гораздо труднее поставить недвусмысленный эксперимент, но зато не требуется той неслыханной точности, которая необходима была, чтобы обнаружить астрономические отклонения от классической механики. В этих науках, по крайней мере на их современной стадии, часто довольствуются не количественными, а качественными результатами".

Условие воспроизводимости очень часто не выполняется в парапсихологии, где результаты зависят от субъекта наблюдения, и именно это служит формальным основанием для объявления парапсихологии "лженаукой". На самом деле, в явлениях, где невозможно четко